November 19, 2025

Care Nex

Stay Healthy, Live Happy

Promoting health and survival through lowered body temperature

Promoting health and survival through lowered body temperature
  • McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10, 63–79 (1935).

    Article 

    Google Scholar 

  • Osborne, T. B., Mendel, L. B. & Ferry, E. L. The effect of retardation of growth upon the breeding period and duration of life of rats. Science 45, 294–295 (1917).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Speakman, J. R., Mitchell, S. E. & Mazidi, M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp. Gerontol. 86, 28–38 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Loeb, J. & Northrop, J. H. Is there a temperature coefficient for the duration of life? Proc. Natl Acad. Sci. USA 2, 456–457 (1916).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearl, R. The Rate of Living (University of London Press, 1928).

  • Rubner, M. Das Problem det Lebensdaur und seiner beziehunger zum Wachstum und Ernarnhung. Oldenberg (1908).

  • Keil, G., Cummings, E. & de Magalhaes, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145–147 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arrhenius, S. A. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 4, 96–116 (1889).

    Article 

    Google Scholar 

  • Arrhenius, S. A. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 2, 226–248 (1889).

    Article 

    Google Scholar 

  • Lamb, M. J. Temperature and lifespan in Drosophila. Nature 220, 808–809 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hollingsworth, M. Environmental temperature and life span in poikilotherms. Nature 218, 869–870 (1968).

    Article 

    Google Scholar 

  • Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miquel, J., Lundgren, P. R., Bensch, K. G. & Atlan, H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech. Ageing Dev. 5, 347–370 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clarke, J. M. & Smith, M. J. Two phases of ageing in Drosophila subobscura. J. Exp. Biol. 38, 679–684 (1961).

    Article 

    Google Scholar 

  • Bourliere, F. Methodology of the Study of Aging. Vol. 3 (eds Wolstenholme, G. E. W. & O’Connor, C. M.) (CIBA Foundation Colloquia on Aging, 1957).

  • Liu, R. K. & Walford, R. L. Increased growth and life-span with lowered ambient temperature in the annual fish, cynolebias adloffi. Nature 212, 1277–1278 (1966).

    Article 

    Google Scholar 

  • Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flurkey, K., Papaconstantinou, J. & Harrison, D. E. The Snell dwarf mutation Pit1dw can increase life span in mice. Mech. Ageing Dev. 123, 121–130 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coschigano, K. T. et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144, 3799–3810 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hauck, S. J., Hunter, W. S., Danilovich, N., Kopchick, J. J. & Bartke, A. Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp. Biol. Med. 226, 552–558 (2001).

    Article 
    CAS 

    Google Scholar 

  • Cintron-Colon, R. et al. Insulin-like growth factor 1 receptor regulates hypothermia during calorie restriction. Proc. Natl Acad. Sci. USA 114, 9731–9736 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Z. et al. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat. Metab. 4, 320–326 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sumbera, R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) – a review. J. Therm. Biol. 79, 166–189 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Firsanov, D. et al. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. Preprint at bioRxiv (2023).

  • Lane, M. A. et al. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc. Natl Acad. Sci. USA 93, 4159–4164 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soare, A., Cangemi, R., Omodei, D., Holloszy, J. O. & Fontana, L. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3, 374–379 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roth, G. S. et al. Biomarkers of caloric restriction may predict longevity in humans. Science 297, 811 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waalen, J. & Buxbaum, J. N. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. A Biol. Sci. Med Sci. 66, 487–492 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Conti, B. Hot news about temperature and lifespan. Nat. Metab. 4, 303–304 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jayne, L. et al. A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan. Nat. Aging 5, 437–449 (2025).

  • John, L. M. et al. Housing-temperature reveals energy intake counter-balances energy expenditure in normal-weight, but not diet-induced obese, male mice. Commun. Biol. 5, 946 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartfai, T. & Conti, B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front. Genet. 3, 184 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guijas, C. et al. Metabolic adaptation to calorie restriction. Sci. Signal. (2020).

  • Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanchez-Alavez, M. et al. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J. Biol. Chem. 286, 14983–14990 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mendez, P., Wandosell, F. & Garcia-Segura, L. M. Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: cellular and molecular mechanisms. Front. Neuroendocrinol. 27, 391–403 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koizumi, A. et al. A tumor preventive effect of dietary restriction is antagonized by a high housing temperature through deprivation of torpor. Mech. Ageing Dev. 92, 67–82 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ali, S. S., Marcondes, M. C., Bajova, H., Dugan, L. L. & Conti, B. Metabolic depression and increased reactive oxygen species production by isolated mitochondria at moderately lower temperatures. J. Biol. Chem. 285, 32522–32528 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carvalho, G. B. et al. The 4E-BP growth pathway regulates the effect of ambient temperature on Drosophila metabolism and lifespan. Proc. Natl Acad. Sci. USA 114, 9737–9742 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conti, B. & Hansen, M. A cool way to live long. Cell 152, 671–672 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiao, R. et al. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152, 806–817 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H. J. et al. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. Nat. Aging 3, 546–566 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Afonyushkin, T., Moll, I., Blasi, U. & Kaberdin, V. R. Temperature-dependent stability and translation of Escherichia coli ompA mRNA. Biochem. Biophys. Res. Commun. 311, 604–609 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Das, A. B. & Prosser, C. L. Biochemical changes in tissues of goldfish acclimated to high and low temperatures. I. Protein synthesis. Comp. Biochem Physiol. 21, 449–467 (1967).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farewell, A. & Neidhardt, F. C. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180, 4704–4710 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraser, K. P. P., Peck, L. S., Clark, M. S., Clarke, A. & Hill, S. L. Life in the freezer: protein metabolism in Antarctic fish. R. Soc. Open Sci. 9, 211272 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathers, E. M., Houlihan, D. F., McCarthy, I. D. & LJ, B. Rates of growth and protein synthesis correlated with nucleic acid content in fry of rainbow trout, Oncorhynchus mykiss: effects of age and temperature. J. Fish. Biol. 43, 245–263 (1993).

    Article 
    CAS 

    Google Scholar 

  • Bai, H., Post, S., Kang, P. & Tatar, M. Drosophila longevity assurance conferred by reduced insulin receptor substrate chico partially requires d4eBP. PLoS ONE 10, e0134415 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H. J. et al. Prostaglandin signals from adult germ stem cells delay somatic aging of Caenorhabditis elegans. Nat. Metab. 1, 790–810 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Haltenhof, T. et al. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78, 57–69 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jordt, S. E., McKemy, D. D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Loh, E., Righetti, F., Eichner, H., Twittenhoff, C. & Narberhaus, F. RNA thermometers in bacterial pathogens. Microbiol. Spectr. (2018).

  • Lindquist, J. A. & Mertens, P. R. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun. Signal. 16, 63 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gotic, I. et al. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev. 30, 2005–2017 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, J. Q. et al. HNRNPH1 regulates the neuroprotective cold-shock protein RBM3 expression through poison exon exclusion. EMBO J. 42, e113168 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Preussner, M. et al. ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo. EMBO Mol. Med. 15, e17157 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandt, S. et al. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur. J. Cell Biol. 91, 464–471 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gottesman, S. Chilled in translation: adapting to bacterial climate change. Mol. Cell 70, 193–194 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolffe, A. P. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 16, 245–251 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolffe, A. P., Tafuri, S., Ranjan, M. & Familari, M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. N. Biol. 4, 290–298 (1992).

    CAS 

    Google Scholar 

  • Derry, J. M., Kerns, J. A. & Francke, U. RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Hum. Mol. Genet. 4, 2307–2311 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, Y. et al. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J. Cell. Physiol. 237, 3788–3802 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, D. R. et al. Seasonally hibernating phenotype assessed through transcript screening. Physiol. Genomics 24, 13–22 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Chazarin, B. et al. Limited oxidative stress favors resistance to skeletal muscle atrophy in hibernating brown bears (Ursus arctos). Antioxidants (2019).

  • Hettinger, Z. R. et al. Skeletal muscle RBM3 expression is associated with extended lifespan in Ames dwarf and calorie restricted mice. Exp. Gerontol. 146, 111214 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferry, A. L., Vanderklish, P. W. & Dupont-Versteegden, E. E. Enhanced survival of skeletal muscle myoblasts in response to overexpression of cold shock protein RBM3. Am. J. Physiol. Cell Physiol. 301, 392–402 (2011).

    Article 

    Google Scholar 

  • Avila-Gomez, P. et al. Cold stress protein RBM3 responds to hypothermia and is associated with good stroke outcome. Brain Commun. 2, fcaa078 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishiyama, H. et al. Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 204, 115–120 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishiyama, H. et al. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J. Cell Biol. 137, 899–908 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rana, S. et al. Unraveling the intricacies of cold-inducible RNA-binding protein: a comprehensive review. Cell Stress Chaperones 29, 615–625 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Artero-Castro, A. et al. Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation. Mol. Cell. Biol. 29, 1855–1868 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goh, G. H. et al. Diet-altered body temperature rhythms are associated with altered rhythms of clock gene expression in peripheral tissues in vivo. J. Therm. Biol. 100, 102983 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Cold-inducible RNA-binding protein CIRP/hnRNP A18 regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res. 44, 761–775 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhadra, M., Howell, P., Dutta, S., Heintz, C. & Mair, W. B. Alternative splicing in aging and longevity. Hum. Genet. 139, 357–369 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ushio, A. & Eto, K. RBM3 expression is upregulated by NF-κB p65 activity, protecting cells from apoptosis, during mild hypothermia. J. Cell. Biochem. 119, 5734–5749 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, X. et al. Expression regulation of cold-inducible protein RBM3 by FAK/Src signaling for neuroprotection against rotenone under mild hypothermia. Biochem. Biophys. Res. Commun. 534, 240–247 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chappell, S. A. & Mauro, V. P. The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J. Biol. Chem. 278, 33793–33800 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, S. Y. et al. Collapsin response mediator protein 4 enhances the radiosensitivity of colon cancer cells through calcium‑mediated cell signaling. Oncol. Rep. (2021).

  • Abbink, T. E. & Berkhout, B. RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J. Virol. 82, 3090–3098 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fujita, T. et al. TRPV4-dependent induction of a novel mammalian cold-inducible protein SRSF5 as well as CIRP and RBM3. Sci. Rep. 7, 2295 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allada, R. & Bass, J. Circadian mechanisms in medicine. N. Engl. J. Med. 384, 550–561 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Windred, D. P. et al. Personal light exposure patterns and incidence of type 2 diabetes: analysis of 13 million hours of light sensor data and 670,000 person-years of prospective observation. Lancet Reg. Health Eur. 42, 100943 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acosta-Rodriguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Windred, D. P. et al. Higher central circadian temperature amplitude is associated with greater metabolite rhythmicity in humans. Sci. Rep. 14, 16796 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Refinetti, R. The circadian rhythm of body temperature. Front. Biosci. 15, 564–594 (2010).

    Article 

    Google Scholar 

  • Sanchez-Alavez, M., Alboni, S. & Conti, B. Sex- and age-specific differences in core body temperature of C57BL/6 mice. Age 33, 89–99 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Czeisler, C. A. et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet 340, 933–936 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duffy, J. F., Dijk, D. J., Klerman, E. B. & Czeisler, C. A. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am. J. Physiol. 275, 1478–1487 (1998).

    Google Scholar 

  • Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cipriano, A. et al. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat. Aging 4, 14–26 (2024).

    Article 
    PubMed 

    Google Scholar 

  • McCaw, B. A., Stevenson, T. J. & Lancaster, L. T. Epigenetic responses to temperature and climate. Integr. Comp. Biol. 60, 1469–1480 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jianfang, W. et al. Exploring epigenetic and genetic modulation in animal responses to thermal stress. Mol. Biotechnol. (2024).

    Article 
    PubMed 

    Google Scholar 

  • Wu, J., Zhang, W. & Li, C. Recent advances in genetic and epigenetic modulation of animal exposure to high temperature. Front. Genet. 11, 653 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ledford, H. Human body’s ageing ‘clock’ ticks faster after heat stress. Nature 636, 534 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abe, Y. et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat. Commun. 9, 1566 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saavedra, D. et al. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun. Ageing 20, 25 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tartaglia, G. G., Pechmann, S., Dobson, C. M. & Vendruscolo, M. A relationship between mRNA expression levels and protein solubility in E. coli. J. Mol. Biol. 388, 381–389 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Somero, G. N. Proteins and temperature. Annu. Rev. Physiol. 57, 43–68 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peretti, D. et al. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518, 236–239 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hypothermia after Cardiac Arrest Study. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).

    Article 

    Google Scholar 

  • Galvin, I. M., Levy, R., Boyd, J. G., Day, A. G. & Wallace, M. C. Cooling for cerebral protection during brain surgery. Cochrane Database Syst. Rev. 1, CD006638 (2015).

    PubMed 

    Google Scholar 

  • You, J. S., Kim, J. Y. & Yenari, M. A. Therapeutic hypothermia for stroke: unique challenges at the bedside. Front. Neurol. 13, 951586 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.