Promoting health and survival through lowered body temperature
McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10, 63–79 (1935).
Google Scholar
Osborne, T. B., Mendel, L. B. & Ferry, E. L. The effect of retardation of growth upon the breeding period and duration of life of rats. Science 45, 294–295 (1917).
Google Scholar
Speakman, J. R., Mitchell, S. E. & Mazidi, M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp. Gerontol. 86, 28–38 (2016).
Google Scholar
Loeb, J. & Northrop, J. H. Is there a temperature coefficient for the duration of life? Proc. Natl Acad. Sci. USA 2, 456–457 (1916).
Google Scholar
Pearl, R. The Rate of Living (University of London Press, 1928).
Rubner, M. Das Problem det Lebensdaur und seiner beziehunger zum Wachstum und Ernarnhung. Oldenberg (1908).
Keil, G., Cummings, E. & de Magalhaes, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).
Google Scholar
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).
Google Scholar
Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145–147 (1972).
Google Scholar
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
Google Scholar
Arrhenius, S. A. Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 4, 96–116 (1889).
Google Scholar
Arrhenius, S. A. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 2, 226–248 (1889).
Google Scholar
Lamb, M. J. Temperature and lifespan in Drosophila. Nature 220, 808–809 (1968).
Google Scholar
Hollingsworth, M. Environmental temperature and life span in poikilotherms. Nature 218, 869–870 (1968).
Google Scholar
Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).
Google Scholar
Miquel, J., Lundgren, P. R., Bensch, K. G. & Atlan, H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech. Ageing Dev. 5, 347–370 (1976).
Google Scholar
Clarke, J. M. & Smith, M. J. Two phases of ageing in Drosophila subobscura. J. Exp. Biol. 38, 679–684 (1961).
Google Scholar
Bourliere, F. Methodology of the Study of Aging. Vol. 3 (eds Wolstenholme, G. E. W. & O’Connor, C. M.) (CIBA Foundation Colloquia on Aging, 1957).
Liu, R. K. & Walford, R. L. Increased growth and life-span with lowered ambient temperature in the annual fish, cynolebias adloffi. Nature 212, 1277–1278 (1966).
Google Scholar
Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).
Google Scholar
Flurkey, K., Papaconstantinou, J. & Harrison, D. E. The Snell dwarf mutation Pit1dw can increase life span in mice. Mech. Ageing Dev. 123, 121–130 (2002).
Google Scholar
Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).
Google Scholar
Coschigano, K. T. et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144, 3799–3810 (2003).
Google Scholar
Hauck, S. J., Hunter, W. S., Danilovich, N., Kopchick, J. J. & Bartke, A. Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp. Biol. Med. 226, 552–558 (2001).
Google Scholar
Cintron-Colon, R. et al. Insulin-like growth factor 1 receptor regulates hypothermia during calorie restriction. Proc. Natl Acad. Sci. USA 114, 9731–9736 (2017).
Google Scholar
Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).
Google Scholar
Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).
Google Scholar
Zhao, Z. et al. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat. Metab. 4, 320–326 (2022).
Google Scholar
Sumbera, R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) – a review. J. Therm. Biol. 79, 166–189 (2019).
Google Scholar
Firsanov, D. et al. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. Preprint at bioRxiv (2023).
Lane, M. A. et al. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc. Natl Acad. Sci. USA 93, 4159–4164 (1996).
Google Scholar
Soare, A., Cangemi, R., Omodei, D., Holloszy, J. O. & Fontana, L. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3, 374–379 (2011).
Google Scholar
Roth, G. S. et al. Biomarkers of caloric restriction may predict longevity in humans. Science 297, 811 (2002).
Google Scholar
Waalen, J. & Buxbaum, J. N. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. A Biol. Sci. Med Sci. 66, 487–492 (2011).
Google Scholar
Conti, B. Hot news about temperature and lifespan. Nat. Metab. 4, 303–304 (2022).
Google Scholar
Jayne, L. et al. A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan. Nat. Aging 5, 437–449 (2025).
John, L. M. et al. Housing-temperature reveals energy intake counter-balances energy expenditure in normal-weight, but not diet-induced obese, male mice. Commun. Biol. 5, 946 (2022).
Google Scholar
Bartfai, T. & Conti, B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front. Genet. 3, 184 (2012).
Google Scholar
Guijas, C. et al. Metabolic adaptation to calorie restriction. Sci. Signal. (2020).
Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59 (2016).
Google Scholar
Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).
Google Scholar
Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020).
Google Scholar
Sanchez-Alavez, M. et al. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J. Biol. Chem. 286, 14983–14990 (2011).
Google Scholar
Mendez, P., Wandosell, F. & Garcia-Segura, L. M. Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: cellular and molecular mechanisms. Front. Neuroendocrinol. 27, 391–403 (2006).
Google Scholar
Koizumi, A. et al. A tumor preventive effect of dietary restriction is antagonized by a high housing temperature through deprivation of torpor. Mech. Ageing Dev. 92, 67–82 (1996).
Google Scholar
Ali, S. S., Marcondes, M. C., Bajova, H., Dugan, L. L. & Conti, B. Metabolic depression and increased reactive oxygen species production by isolated mitochondria at moderately lower temperatures. J. Biol. Chem. 285, 32522–32528 (2010).
Google Scholar
Carvalho, G. B. et al. The 4E-BP growth pathway regulates the effect of ambient temperature on Drosophila metabolism and lifespan. Proc. Natl Acad. Sci. USA 114, 9737–9742 (2017).
Google Scholar
Conti, B. & Hansen, M. A cool way to live long. Cell 152, 671–672 (2013).
Google Scholar
Xiao, R. et al. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152, 806–817 (2013).
Google Scholar
Lee, H. J. et al. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. Nat. Aging 3, 546–566 (2023).
Google Scholar
Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).
Google Scholar
Afonyushkin, T., Moll, I., Blasi, U. & Kaberdin, V. R. Temperature-dependent stability and translation of Escherichia coli ompA mRNA. Biochem. Biophys. Res. Commun. 311, 604–609 (2003).
Google Scholar
Das, A. B. & Prosser, C. L. Biochemical changes in tissues of goldfish acclimated to high and low temperatures. I. Protein synthesis. Comp. Biochem Physiol. 21, 449–467 (1967).
Google Scholar
Farewell, A. & Neidhardt, F. C. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180, 4704–4710 (1998).
Google Scholar
Fraser, K. P. P., Peck, L. S., Clark, M. S., Clarke, A. & Hill, S. L. Life in the freezer: protein metabolism in Antarctic fish. R. Soc. Open Sci. 9, 211272 (2022).
Google Scholar
Mathers, E. M., Houlihan, D. F., McCarthy, I. D. & LJ, B. Rates of growth and protein synthesis correlated with nucleic acid content in fry of rainbow trout, Oncorhynchus mykiss: effects of age and temperature. J. Fish. Biol. 43, 245–263 (1993).
Google Scholar
Bai, H., Post, S., Kang, P. & Tatar, M. Drosophila longevity assurance conferred by reduced insulin receptor substrate chico partially requires d4eBP. PLoS ONE 10, e0134415 (2015).
Google Scholar
Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).
Google Scholar
Lee, H. J. et al. Prostaglandin signals from adult germ stem cells delay somatic aging of Caenorhabditis elegans. Nat. Metab. 1, 790–810 (2019).
Google Scholar
Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).
Google Scholar
Haltenhof, T. et al. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78, 57–69 (2020).
Google Scholar
Jordt, S. E., McKemy, D. D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 (2003).
Google Scholar
Loh, E., Righetti, F., Eichner, H., Twittenhoff, C. & Narberhaus, F. RNA thermometers in bacterial pathogens. Microbiol. Spectr. (2018).
Lindquist, J. A. & Mertens, P. R. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun. Signal. 16, 63 (2018).
Google Scholar
Gotic, I. et al. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev. 30, 2005–2017 (2016).
Google Scholar
Lin, J. Q. et al. HNRNPH1 regulates the neuroprotective cold-shock protein RBM3 expression through poison exon exclusion. EMBO J. 42, e113168 (2023).
Google Scholar
Preussner, M. et al. ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo. EMBO Mol. Med. 15, e17157 (2023).
Google Scholar
Brandt, S. et al. Cold shock Y-box protein-1 participates in signaling circuits with auto-regulatory activities. Eur. J. Cell Biol. 91, 464–471 (2012).
Google Scholar
Gottesman, S. Chilled in translation: adapting to bacterial climate change. Mol. Cell 70, 193–194 (2018).
Google Scholar
Wolffe, A. P. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 16, 245–251 (1994).
Google Scholar
Wolffe, A. P., Tafuri, S., Ranjan, M. & Familari, M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. N. Biol. 4, 290–298 (1992).
Google Scholar
Derry, J. M., Kerns, J. A. & Francke, U. RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Hum. Mol. Genet. 4, 2307–2311 (1995).
Google Scholar
Hu, Y. et al. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J. Cell. Physiol. 237, 3788–3802 (2022).
Google Scholar
Williams, D. R. et al. Seasonally hibernating phenotype assessed through transcript screening. Physiol. Genomics 24, 13–22 (2005).
Google Scholar
Chazarin, B. et al. Limited oxidative stress favors resistance to skeletal muscle atrophy in hibernating brown bears (Ursus arctos). Antioxidants (2019).
Hettinger, Z. R. et al. Skeletal muscle RBM3 expression is associated with extended lifespan in Ames dwarf and calorie restricted mice. Exp. Gerontol. 146, 111214 (2021).
Google Scholar
Ferry, A. L., Vanderklish, P. W. & Dupont-Versteegden, E. E. Enhanced survival of skeletal muscle myoblasts in response to overexpression of cold shock protein RBM3. Am. J. Physiol. Cell Physiol. 301, 392–402 (2011).
Google Scholar
Avila-Gomez, P. et al. Cold stress protein RBM3 responds to hypothermia and is associated with good stroke outcome. Brain Commun. 2, fcaa078 (2020).
Google Scholar
Nishiyama, H. et al. Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 204, 115–120 (1997).
Google Scholar
Nishiyama, H. et al. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J. Cell Biol. 137, 899–908 (1997).
Google Scholar
Rana, S. et al. Unraveling the intricacies of cold-inducible RNA-binding protein: a comprehensive review. Cell Stress Chaperones 29, 615–625 (2024).
Google Scholar
Artero-Castro, A. et al. Cold-inducible RNA-binding protein bypasses replicative senescence in primary cells through extracellular signal-regulated kinase 1 and 2 activation. Mol. Cell. Biol. 29, 1855–1868 (2009).
Google Scholar
Goh, G. H. et al. Diet-altered body temperature rhythms are associated with altered rhythms of clock gene expression in peripheral tissues in vivo. J. Therm. Biol. 100, 102983 (2021).
Google Scholar
Zhang, Y. et al. Cold-inducible RNA-binding protein CIRP/hnRNP A18 regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res. 44, 761–775 (2016).
Google Scholar
Bhadra, M., Howell, P., Dutta, S., Heintz, C. & Mair, W. B. Alternative splicing in aging and longevity. Hum. Genet. 139, 357–369 (2020).
Google Scholar
Ushio, A. & Eto, K. RBM3 expression is upregulated by NF-κB p65 activity, protecting cells from apoptosis, during mild hypothermia. J. Cell. Biochem. 119, 5734–5749 (2018).
Google Scholar
Yuan, X. et al. Expression regulation of cold-inducible protein RBM3 by FAK/Src signaling for neuroprotection against rotenone under mild hypothermia. Biochem. Biophys. Res. Commun. 534, 240–247 (2021).
Google Scholar
Chappell, S. A. & Mauro, V. P. The internal ribosome entry site (IRES) contained within the RNA-binding motif protein 3 (Rbm3) mRNA is composed of functionally distinct elements. J. Biol. Chem. 278, 33793–33800 (2003).
Google Scholar
Park, S. Y. et al. Collapsin response mediator protein 4 enhances the radiosensitivity of colon cancer cells through calcium‑mediated cell signaling. Oncol. Rep. (2021).
Abbink, T. E. & Berkhout, B. RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J. Virol. 82, 3090–3098 (2008).
Google Scholar
Fujita, T. et al. TRPV4-dependent induction of a novel mammalian cold-inducible protein SRSF5 as well as CIRP and RBM3. Sci. Rep. 7, 2295 (2017).
Google Scholar
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).
Google Scholar
Allada, R. & Bass, J. Circadian mechanisms in medicine. N. Engl. J. Med. 384, 550–561 (2021).
Google Scholar
Windred, D. P. et al. Personal light exposure patterns and incidence of type 2 diabetes: analysis of 13 million hours of light sensor data and 670,000 person-years of prospective observation. Lancet Reg. Health Eur. 42, 100943 (2024).
Google Scholar
Acosta-Rodriguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862 (2021).
Google Scholar
Windred, D. P. et al. Higher central circadian temperature amplitude is associated with greater metabolite rhythmicity in humans. Sci. Rep. 14, 16796 (2024).
Google Scholar
Refinetti, R. The circadian rhythm of body temperature. Front. Biosci. 15, 564–594 (2010).
Google Scholar
Sanchez-Alavez, M., Alboni, S. & Conti, B. Sex- and age-specific differences in core body temperature of C57BL/6 mice. Age 33, 89–99 (2011).
Google Scholar
Czeisler, C. A. et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet 340, 933–936 (1992).
Google Scholar
Duffy, J. F., Dijk, D. J., Klerman, E. B. & Czeisler, C. A. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am. J. Physiol. 275, 1478–1487 (1998).
Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).
Google Scholar
Cipriano, A. et al. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat. Aging 4, 14–26 (2024).
Google Scholar
McCaw, B. A., Stevenson, T. J. & Lancaster, L. T. Epigenetic responses to temperature and climate. Integr. Comp. Biol. 60, 1469–1480 (2020).
Google Scholar
Jianfang, W. et al. Exploring epigenetic and genetic modulation in animal responses to thermal stress. Mol. Biotechnol. (2024).
Google Scholar
Wu, J., Zhang, W. & Li, C. Recent advances in genetic and epigenetic modulation of animal exposure to high temperature. Front. Genet. 11, 653 (2020).
Google Scholar
Ledford, H. Human body’s ageing ‘clock’ ticks faster after heat stress. Nature 636, 534 (2024).
Google Scholar
Abe, Y. et al. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nat. Commun. 9, 1566 (2018).
Google Scholar
Saavedra, D. et al. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun. Ageing 20, 25 (2023).
Google Scholar
Tartaglia, G. G., Pechmann, S., Dobson, C. M. & Vendruscolo, M. A relationship between mRNA expression levels and protein solubility in E. coli. J. Mol. Biol. 388, 381–389 (2009).
Google Scholar
Somero, G. N. Proteins and temperature. Annu. Rev. Physiol. 57, 43–68 (1995).
Google Scholar
Peretti, D. et al. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518, 236–239 (2015).
Google Scholar
Hypothermia after Cardiac Arrest Study. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).
Google Scholar
Galvin, I. M., Levy, R., Boyd, J. G., Day, A. G. & Wallace, M. C. Cooling for cerebral protection during brain surgery. Cochrane Database Syst. Rev. 1, CD006638 (2015).
Google Scholar
You, J. S., Kim, J. Y. & Yenari, M. A. Therapeutic hypothermia for stroke: unique challenges at the bedside. Front. Neurol. 13, 951586 (2022).
Google Scholar
link
