October 7, 2024

Care Nex

Stay Healthy, Live Happy

Accelerometer-derived ‘weekend warrior’ physical activity pattern and brain health

Accelerometer-derived ‘weekend warrior’ physical activity pattern and brain health
  • Iso-Markku, P. et al. Physical activity as a protective factor for dementia and Alzheimer’s disease: systematic review, meta-analysis and quality assessment of cohort and case-control studies. Br. J. Sports Med. 56, 701–709 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hooker, S. P. et al. Association of accelerometer-measured sedentary time and physical activity with risk of stroke among US adults. JAMA Netw. Open 5, e2215385 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, X. et al. Association of levels of physical activity with risk of Parkinson disease: a systematic review and meta-analysis. JAMA Netw. Open 1, e182421 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, F. K. et al. Device-measured physical activity and incident affective disorders. BMC Med. 20, 290 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kunutsor, S. K., Jae, S. Y. & Laukkanen, J. A. ‘Weekend warrior’ and regularly active physical activity patterns confer similar cardiovascular and mortality benefits: a systematic meta-analysis. Eur. J. Prev. Cardiol. 30, e7–e10 (2023).

  • Optimizing Brain Health Across the Life Course: WHO Position Paper (WHO, 2022).

  • O’Donovan, G., Lee, I. M., Hamer, M. & Stamatakis, E. Association of ‘weekend warrior’ and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease and cancer mortality. JAMA Intern. Med. 177, 335–342 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Dos Santos, M. et al. Association of the ‘weekend warrior’ and other leisure-time physical activity patterns with all-cause and cause-specific mortality: a nationwide cohort study. JAMA Intern. Med. 182, 840–848 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamer, M., Biddle, S. J. H. & Stamatakis, E. Weekend warrior physical activity pattern and common mental disorder: a population wide study of 108,011 British adults. Int. J. Behav. Nutr. Phys. Act. 14, 96 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khurshid, S., Al-Alusi, M. A., Churchill, T. W., Guseh, J. S. & Ellinor, P. T. Accelerometer-derived ‘weekend warrior’ physical activity and incident cardiovascular disease. JAMA 330, 247–252 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, R. et al. Weekend warrior physical activity pattern is associated with lower depression risk: findings from NHANES 2007–2018. Gen. Hosp. Psychiatry 84, 165–171 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Shiroma, E. J., Lee, I. M., Schepps, M. A., Kamada, M. & Harris, T. B. Physical activity patterns and mortality: the weekend warrior and activity bouts. Med. Sci. Sports Exerc. 51, 35–40 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, D., Batterham, A. M., Peacock, O. J., Western, M. J. & Booso, R. Feedback from physical activity monitors is not compatible with current recommendations: a recalibration study. Prev. Med. 91, 389–394 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Öztürk, Ç. Ç. et al. Weekend warrior exercise model for protection from chronic mild stress‑induced depression and ongoing cognitive impairment. Acta Neurobiol. Exp. 83, 10–24 (2023).

    Article 

    Google Scholar 

  • Mee-Inta, O., Zhao, Z.-W. & Kuo, Y.-M. Physical exercise inhibits inflammation and microglial activation. Cells 8, 691 (2019).

  • Zhang, Y.-R. et al. Personality traits and brain health: a large prospective cohort study. Nat. Mental Health 1, 722–735 (2023).

    Article 

    Google Scholar 

  • Cotman, C. W., Berchtold, N. C. & Christie, L.-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paillard, T., Rolland, Y. & de Souto Barreto, P. Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: a narrative review. J. Clin. Neurol. 11, 212–219 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De la Rosa, A. et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport Health Sci. 9, 394–404 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boecker, H. et al. The runner’s high: opioidergic mechanisms in the human brain. Cereb. Cortex 18, 2523–2531 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 6, e1077–e1086 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Santos, A. C., Willumsen, J., Meheus, F., Ilbawi, A. & Bull, F. C. The cost of inaction on physical inactivity to public health-care systems: a population-attributable fraction analysis. Lancet Glob. Health 11, e32–e39 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fry, A., Littlejohns, T. J., Sudlow, C., Doherty, N. & Allen, N. E. OP41 The representativeness of the UK Biobank cohort on a range of sociodemographic, physical, lifestyle and health-related characteristics. J. Epidemiol. Commun. Health 70, A26 (2016).

    Google Scholar 

  • Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saint-Maurice, P. F. et al. Reproducibility of accelerometer and posture-derived measures of physical activity. Med. Sci. Sports Exerc. 52, 876–883 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mielke, G. I. et al. Absolute intensity thresholds for tri-axial wrist and waist accelerometer-measured movement behaviors in adults. Scand. J. Med. Sci. Sports 33, 1752–1764 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tedesco, S. et al. Validity evaluation of the Fitbit Charge2 and the Garmin vivosmart HR+ in free-living rnvironments in an older adult cohort. JMIR Mhealth Uhealth 7, e13084 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welch, W. A. et al. Classification accuracy of the wrist-worn gravity estimator of normal everyday activity accelerometer. Med. Sci. Sports Exerc. 45, 2012–2019 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doherty, A. et al. Large scale population assessment of physical activity using wrist worn accelerometers: the UK Biobank Study. PLoS ONE 12, e0169649 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walmsley, R. et al. Reallocation of time between device-measured movement behaviours and risk of incident cardiovascular disease. Br. J. Sports Med. 56, 1008–1017 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bush, K. et al. THUR 121 Identifying participants with Parkinson’s disease in UK Biobank. J. Neurol. Neurosurg. Psychiatry 89, A13 (2018).

    Google Scholar 

  • Wilkinson, T. et al. Identifying dementia outcomes in UK Biobank: a validation study of primary care, hospital admissions and mortality data. Eur. J. Epidemiol. 34, 557–565 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rannikmäe, K. et al. Accuracy of identifying incident stroke cases from linked health care data in UK Biobank. Neurology 95, e697–e707 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terracciano, A., Luchetti, M., Karakose, S., Stephan, Y. & Sutin, A. R. Loneliness and risk of Parkinson disease. JAMA Neurol. 80, 1138–1144 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Townsend, P., Phillimore, P. & Beattie, A. Health and Deprivation: Inequality and the North (Routledge, 1988).

  • Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes and obesity: a comprehensive review. Circulation 133, 187–225 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris, M. C. et al. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 11, 1007–1014 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Cao, Z. et al. Healthy sleep patterns and common mental disorders among individuals with cardiovascular disease: a prospective cohort study. J. Affect. Disord. 338, 487–494 (2023).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.